博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理
阅读量:7122 次
发布时间:2019-06-28

本文共 19188 字,大约阅读时间需要 63 分钟。

Fork版本项目地址:

一、TFR数据读取

创建slim.dataset.Dataset对象

在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象

# Select the dataset.# 'imagenet', 'train', tfr文件存储位置# TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者testdataset = dataset_factory.get_dataset(    FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

获取过程会经过一系列臃肿的调用,我把中间被调用的函数(们)写在了下面,由上到下依次调用:

def get_dataset(name, split_name, dataset_dir, file_pattern=None, reader=None):    """    Returns:        A `Dataset` class.    Raises:        ValueError: If the dataset `name` is unknown.    """    if name not in datasets_map:        raise ValueError('Name of dataset unknown %s' % name)    # pascalvoc_2012.get_split    return datasets_map[name].get_split(split_name,                                        dataset_dir,                                        file_pattern,                                        reader)def get_split(split_name, dataset_dir, file_pattern=None, reader=None):    """    Returns:      A `Dataset` namedtuple.    Raises:        ValueError: if `split_name` is not a valid train/test split.    """    if not file_pattern:        file_pattern = FILE_PATTERN  # 需要文件命名格式满足:'voc_2012_%s_*.tfrecord'    return pascalvoc_common.get_split(split_name, dataset_dir,                                      file_pattern, reader,                                      SPLITS_TO_SIZES,  # {'train': 17125,}                                      ITEMS_TO_DESCRIPTIONS,                                      NUM_CLASSES  # 20                                      )    """    ITEMS_TO_DESCRIPTIONS = {    'image': 'A color image of varying height and width.',    'shape': 'Shape of the image',    'object/bbox': 'A list of bounding boxes, one per each object.',    'object/label': 'A list of labels, one per each object.',    }    """

最终调用,获取slim.dataset.Dataset(解析见),实际上能够传入满足slim.dataset.Dataset的参数即可:

def get_split(split_name, dataset_dir, file_pattern, reader,              split_to_sizes, items_to_descriptions, num_classes):    """Gets a dataset tuple with instructions for reading Pascal VOC dataset.    Args:      split_name: A train/test split name.      dataset_dir: The base directory of the dataset sources.      file_pattern: The file pattern to use when matching the dataset sources.        It is assumed that the pattern contains a '%s' string so that the split        name can be inserted.      reader: The TensorFlow reader type.    Returns:      A `Dataset` namedtuple.    Raises:        ValueError: if `split_name` is not a valid train/test split.    """    # 'train'    if split_name not in split_to_sizes:        raise ValueError('split name %s was not recognized.' % split_name)    file_pattern = os.path.join(dataset_dir, file_pattern % split_name)    # Allowing None in the signature so that dataset_factory can use the default.    if reader is None:        reader = tf.TFRecordReader    # Features in Pascal VOC TFRecords.    keys_to_features = {  # 解码TFR文件方式        'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),        'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),        'image/height': tf.FixedLenFeature([1], tf.int64),        'image/width': tf.FixedLenFeature([1], tf.int64),        'image/channels': tf.FixedLenFeature([1], tf.int64),        'image/shape': tf.FixedLenFeature([3], tf.int64),        'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),        'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),        'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),        'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),        'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),        'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),        'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),    }    items_to_handlers = {  # 解码二进制数据条目        'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'),        'shape': slim.tfexample_decoder.Tensor('image/shape'),        'object/bbox': slim.tfexample_decoder.BoundingBox(                ['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'),        'object/label': slim.tfexample_decoder.Tensor('image/object/bbox/label'),        'object/difficult': slim.tfexample_decoder.Tensor('image/object/bbox/difficult'),        'object/truncated': slim.tfexample_decoder.Tensor('image/object/bbox/truncated'),    }    # 解码实施    decoder = slim.tfexample_decoder.TFExampleDecoder(        keys_to_features, items_to_handlers)    labels_to_names = None    # tf.gfile.Exists(os.path.join(dataset_dir, 'labels.txt'))    if dataset_utils.has_labels(dataset_dir):        labels_to_names = dataset_utils.read_label_file(dataset_dir)    # else:    #     labels_to_names = create_readable_names_for_imagenet_labels()    #     dataset_utils.write_label_file(labels_to_names, dataset_dir)    return slim.dataset.Dataset(            data_sources=file_pattern,                    # TFR文件名            reader=reader,                                # 阅读器            decoder=decoder,                              # 解码Tensor            num_samples=split_to_sizes[split_name],       # 数目            items_to_descriptions=items_to_descriptions,  # decoder条目描述字段            num_classes=num_classes,                      # 类别数            labels_to_names=labels_to_names               # 字典{图片:类别,……}    )''' items_to_descriptions:    {'image': 'A color image of varying height and width.',     'shape': 'Shape of the image',     'object/bbox': 'A list of bounding boxes, one per each object.',     'object/label': 'A list of labels, one per each object.',}'''

这里额外说一句,存储数据中ymin、xmin、ymax、xmax格子存储为(n,)的shape(n表示图像中对象数目),但是在进行了items_to_handlers之后,新的handlers:object/bbox形状变化为(n, 4),由于这涉及到多目标检测后续一系列处理,所以值得注意。

从TFR中获取 batch数据

with tf.name_scope(FLAGS.dataset_name + '_data_provider'):                provider = slim.dataset_data_provider.DatasetDataProvider(                    dataset,  # DatasetDataProvider 需要 slim.dataset.Dataset 做参数                    num_readers=FLAGS.num_readers,                    common_queue_capacity=20 * FLAGS.batch_size,                    common_queue_min=10 * FLAGS.batch_size,                    shuffle=True)            # Get for SSD network: image, labels, bboxes.c            # DatasetDataProvider可以通过TFR字段获取batch size数据            [image, shape, glabels, gbboxes] = provider.get(['image', 'shape',                                                             'object/label',                                                             'object/bbox'])

 此时数据已经获取完毕,预处理之后即可加入运算。

注意,直到现在为止,我们仅对图片数据进行了解码,并没有扩充维度,也就是说其维度依然是3维

二、数据处理

获取对应数据集的预处里函数,并使用其处理上面小结中获取的batch数据,

image_preprocessing_fn = preprocessing_factory.get_preprocessing(            preprocessing_name, is_training=True)# Pre-processing image, labels and bboxes.image, glabels, gbboxes = \    image_preprocessing_fn(image, glabels, gbboxes,                           out_shape=ssd_shape,  # (300,300)                           data_format=DATA_FORMAT)  # 'NCHW'

 有的时候你会觉得这种层层调用非常的sb……下面两步依旧是个调用链,

def get_preprocessing(name, is_training=False):    preprocessing_fn_map = {        'ssd_300_vgg': ssd_vgg_preprocessing,        'ssd_512_vgg': ssd_vgg_preprocessing,    }    if name not in preprocessing_fn_map:        raise ValueError('Preprocessing name [%s] was not recognized' % name)    def preprocessing_fn(image, labels, bboxes,                         out_shape, data_format='NHWC', **kwargs):        return preprocessing_fn_map[name].preprocess_image(            image, labels, bboxes, out_shape, data_format=data_format,            is_training=is_training, **kwargs)    return preprocessing_fndef preprocess_image(image,                     labels,                     bboxes,                     out_shape,                     data_format,                     is_training=False,                     **kwargs):    if is_training:        return preprocess_for_train(image, labels, bboxes,                                    out_shape=out_shape,                                    data_format=data_format)    else:        return preprocess_for_eval(image, labels, bboxes,                                   out_shape=out_shape,                                   data_format=data_format,                                   **kwargs)

之后就是数据具体的预处理函数,本篇我们仅仅关注训练预处理。

训练数据预处理概览

大致流程是:

有条件的在原图上裁剪一个区域

计算裁剪后区域和各个标注框的重叠,视阈值保留bboxes和labels

裁剪出来的图片放大到输入图片大小(bbox都是归一化的,不需要放缩)

随机翻转(bbox要同步翻转)

其他预处理(不涉及bbox)

返回image, labels, bboxes

def preprocess_for_train(image, labels, bboxes,                         out_shape, data_format='NHWC',                         scope='ssd_preprocessing_train'):    """Preprocesses the given image for training.    """    fast_mode = False    with tf.name_scope(scope, 'ssd_preprocessing_train', [image, labels, bboxes]):        if image.get_shape().ndims != 3:            raise ValueError('Input must be of size [height, width, C>0]')        # Convert to float scaled [0, 1].        if image.dtype != tf.float32:            image = tf.image.convert_image_dtype(image, dtype=tf.float32)        tf_summary_image(image, bboxes, 'image_with_bboxes')        # 上面保证了图片是3维的tf.float32格式        # (有条件的)随机裁剪,筛选调整后的labels(n,)、bboxes(n, 4),裁剪图片对应原图坐标(4,)        dst_image, labels, bboxes, distort_bbox = \            distorted_bounding_box_crop(image, labels, bboxes,                                        min_object_covered=MIN_OBJECT_COVERED,  # 0.25                                        aspect_ratio_range=CROP_RATIO_RANGE)  # (0.6, 1.67)        # Resize image to output size.        dst_image = tf_image.resize_image(dst_image, out_shape,                                          method=tf.image.ResizeMethod.BILINEAR,                                          align_corners=False)        tf_summary_image(dst_image, bboxes, 'image_shape_distorted')        # Randomly flip the image horizontally.        dst_image, bboxes = tf_image.random_flip_left_right(dst_image, bboxes)        # Randomly distort the colors. There are 4 ways to do it.        dst_image = apply_with_random_selector(                dst_image,                lambda x, ordering: distort_color(x, ordering, fast_mode),                num_cases=4)        tf_summary_image(dst_image, bboxes, 'image_color_distorted')        # Rescale to VGG input scale.        image = dst_image * 255.        image = tf_image_whitened(image, [_R_MEAN, _G_MEAN, _B_MEAN])        # mean = tf.constant(means, dtype=image.dtype)        # image = image - mean        # Image data format.        if data_format == 'NCHW':            image = tf.transpose(image, perm=(2, 0, 1))        # 'NHWC' (n,) (n, 4)        return image, labels, bboxes

裁剪图片并调整labels、bboxes

整体流程如下,

调用内置函数保证裁剪的大小范围以及一定会包含一些关注目标,返回裁剪参数

裁剪(注意保留裁剪位置参数)图片

计算裁剪框和各个检测框的重叠,并设置阈值舍弃、调整保留框坐标

def distorted_bounding_box_crop(image,                                labels,                                bboxes,                                min_object_covered=0.3,                                aspect_ratio_range=(0.9, 1.1),                                area_range=(0.1, 1.0),                                max_attempts=200,                                clip_bboxes=True,                                scope=None):    """Generates cropped_image using a one of the bboxes randomly distorted.    See `tf.image.sample_distorted_bounding_box` for more documentation.    Args:        image: 3-D Tensor of image (it will be converted to floats in [0, 1]).        bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]            where each coordinate is [0, 1) and the coordinates are arranged            as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole            image.        min_object_covered: An optional `float`. Defaults to `0.1`. The cropped            area of the image must contain at least this fraction of any bounding box            supplied.        aspect_ratio_range: An optional list of `floats`. The cropped area of the            image must have an aspect ratio = width / height within this range.        area_range: An optional list of `floats`. The cropped area of the image            must contain a fraction of the supplied image within in this range.        max_attempts: An optional `int`. Number of attempts at generating a cropped            region of the image of the specified constraints. After `max_attempts`            failures, return the entire image.        scope: Optional scope for name_scope.    Returns:        A tuple, a 3-D Tensor cropped_image and the distorted bbox    """    with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bboxes]):        # 高级的随机裁剪        # The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width        # and height of the underlying image.        # 1-D, 1-D, [1, 1, 4]        bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box(                tf.shape(image),                bounding_boxes=tf.expand_dims(bboxes, 0),  # [1, n, 4]                min_object_covered=min_object_covered,                aspect_ratio_range=aspect_ratio_range,                area_range=area_range,                max_attempts=max_attempts,                use_image_if_no_bounding_boxes=True)        '''        Returns:            A tuple of `Tensor` objects (begin, size, bboxes).        begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[offset_height, offset_width, 0]`.             Provide as input to `tf.slice`.        size: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[target_height, target_width, -1]`.             Provide as input to `tf.slice`.        bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing the distorted bounding box.            Provide as input to `tf.image.draw_bounding_boxes`.        '''        # [4]        distort_bbox = distort_bbox[0, 0]        # Crop the image to the specified bounding box.        cropped_image = tf.slice(image, bbox_begin, bbox_size)        # Restore the shape since the dynamic slice loses 3rd dimension.        cropped_image.set_shape([None, None, 3])  # <-----设置了尺寸了哈        # Update bounding boxes: resize and filter out.        bboxes = tfe.bboxes_resize(distort_bbox, bboxes)  # [4], [n, 4]        labels, bboxes = tfe.bboxes_filter_overlap(labels, bboxes,                                                   threshold=BBOX_CROP_OVERLAP,  # 0.5                                                   assign_negative=False)        # 返回随机裁剪的图片,筛选调整后的labels(n,)、bboxes(n, 4),裁剪图片对应原图坐标(4,)        return cropped_image, labels, bboxes, distort_bbox

三个关键函数:

tf.image.sample_distorted_bounding_box 裁剪,用法查看文档,就是裁剪一个子图,返回最后参数是子图坐标

bboxes_resize 框坐标原点置为裁剪框左上角点,xy单位长度置为裁剪框wh(归一化)

bboxes_filter_overlap 计算重叠区/原框的百分比,舍弃达不到阈值的labels和bboxes

其中第二个函数我们前面并未强调,但是,由于所有的涉及框坐标的计算都是基于图像坐标归一化之后(tf内置函数都是这样),所以这一步计算是必要的,将坐标系由原图(注意是图,这也导致了两者单位长度差别很大)转换为裁剪框,并设定单位长度。

def bboxes_resize(bbox_ref, bboxes, name=None):    # Tensors inputs.    with tf.name_scope(name, 'bboxes_resize'):        # Translate.        # bbox_ref:['ymin', 'xmin', 'ymax', 'xmax']        v = tf.stack([bbox_ref[0], bbox_ref[1], bbox_ref[0], bbox_ref[1]])        bboxes = bboxes - v        # Scale.        s = tf.stack([bbox_ref[2] - bbox_ref[0],  # h                      bbox_ref[3] - bbox_ref[1],  # w                      bbox_ref[2] - bbox_ref[0],                      bbox_ref[3] - bbox_ref[1]])        bboxes = bboxes / s        return bboxesdef bboxes_filter_overlap(labels, bboxes,                          threshold=0.5, assign_negative=False,                          scope=None):    """Filter out bounding boxes based on (relative )overlap with reference    box [0, 0, 1, 1].  Remove completely bounding boxes, or assign negative    labels to the one outside (useful for latter processing...).    Return:      labels, bboxes: Filtered (or newly assigned) elements.    """    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):        # (N,) Tensor:和[0,0,1,1]相交面积大于0的位置返回面积比(相交/原本),小于0的位置返回0        scores = bboxes_intersection(tf.constant([0, 0, 1, 1], bboxes.dtype),                                     bboxes)        mask = scores > threshold        if assign_negative:  # 保留所有的label和框,重叠区不够的label置负            labels = tf.where(mask, labels, -labels)  # 交叉满足的标记为正,否则为负        else:  # 删除重叠区不够的label和框            labels = tf.boolean_mask(labels, mask)  # bool掩码,类似于array的bool切片            bboxes = tf.boolean_mask(bboxes, mask)        return labels, bboxes# 被上面函数调用,计算相交(和裁剪框)面积占原框面积比值def bboxes_intersection(bbox_ref, bboxes, name=None):    """Compute relative intersection between a reference box and a    collection of bounding boxes. Namely, compute the quotient between    intersection area and box area.    Args:      bbox_ref: (N, 4) or (4,) Tensor with reference bounding box(es).      bboxes: (N, 4) Tensor, collection of bounding boxes.    Return:      (N,) Tensor with relative intersection.    """    with tf.name_scope(name, 'bboxes_intersection'):        # Should be more efficient to first transpose.        bboxes = tf.transpose(bboxes)        bbox_ref = tf.transpose(bbox_ref)        # Intersection bbox and volume.        int_ymin = tf.maximum(bboxes[0], bbox_ref[0])        int_xmin = tf.maximum(bboxes[1], bbox_ref[1])        int_ymax = tf.minimum(bboxes[2], bbox_ref[2])        int_xmax = tf.minimum(bboxes[3], bbox_ref[3])        h = tf.maximum(int_ymax - int_ymin, 0.)        w = tf.maximum(int_xmax - int_xmin, 0.)        # Volumes.        inter_vol = h * w  # 各个框在[0,0,1,1]内的面积        bboxes_vol = (bboxes[2] - bboxes[0]) * (bboxes[3] - bboxes[1])  # 各个框面积        scores = tfe_math.safe_divide(inter_vol, bboxes_vol, 'intersection')        # from tensorflow.python.ops import math_ops        # 大于0的位置返回面积比,小于0的位置返回0        # tf.where(math_ops.greater(bboxes_vol, 0),  # 返回bool表是否大于0        #          math_ops.divide(inter_vol, bboxes_vol),        #          tf.zeros_like(inter_vol), name=name)        return scores

其他预处理函数没什么特别注意的,不多介绍,自行查看源码即可。

至此,数据预处理完成,我们给出自从TFR中获取数据到预处理完成的局部代码,如下,

with tf.device(deploy_config.inputs_device()):            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):                provider = slim.dataset_data_provider.DatasetDataProvider(                    dataset,  # DatasetDataProvider 需要 slim.dataset.Dataset 做参数                    num_readers=FLAGS.num_readers,                    common_queue_capacity=20 * FLAGS.batch_size,                    common_queue_min=10 * FLAGS.batch_size,                    shuffle=True)            # Get for SSD network: image, labels, bboxes.c            # DatasetDataProvider可以通过TFR字段获取batch size数据            [image, shape, glabels, gbboxes] = provider.get(['image', 'shape',                                                             'object/label',                                                             'object/bbox'])            # Pre-processing image, labels and bboxes.            # 'CHW' (n,) (n, 4)            image, glabels, gbboxes = \                image_preprocessing_fn(image, glabels, gbboxes,                                       out_shape=ssd_shape,  # (300,300)                                       data_format=DATA_FORMAT)  # 'NCHW'

 

转载地址:http://mzael.baihongyu.com/

你可能感兴趣的文章
动画机制总结
查看>>
长长的望远镜
查看>>
在给予react的ANTD中如何改变某些固定项?
查看>>
慕课网_《使用Google Guice实现依赖注入》学习总结
查看>>
Calendar工具类对跨年的星期的处理个人总结
查看>>
云计算和DevOps那点事
查看>>
什么是客户端负载均衡
查看>>
【mongoDB查询进阶】聚合管道(二) -- 阶段操作符
查看>>
2017-07-15 前端日报
查看>>
Android布局优化:ViewStub标签实现延迟加载(源码解析原理)
查看>>
Webpack快速入门
查看>>
HandlerThread与AsyncQueryHandler源码分析
查看>>
caffe原理之softmax函数
查看>>
数据分组统计
查看>>
记录fastclick中一次手动触发click事件失败
查看>>
云框架发布KONG API Gateway主题,开源求助攻~
查看>>
从一次报错聊聊 Point 事件
查看>>
JS attribute and prpperty
查看>>
SpringMVC配置太多?试试SpringBoot
查看>>
详解js深浅复制
查看>>